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• Classical bits 
– Representing the classical bit in a two-dimensional vector space
– Multiple classical bits as tensor products 

• Axioms (rules) of quantum mechanics 
– Quantum bits (qubits)
– Reversible operations on qubits
– Unitary operators 
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Agenda



• A classical bit of information is either 1 or 0 and is constructed physically from any device that can 
distinguish between the two states  of 1 and 0.  A switch is a good example of a physical implementation of 
a classical bit: the switch is either on (1) or off (0).

• If we have the five classical bits: 10011, we can represent their state by the Dirac ket, | >, symbol we have 
already learned as: |1 > |0 > |0 > |1 > |1 > .

• A pair of classical bits have the following permutations: |0 > |0 >, |0 > |1 >, |1 > |0 >, |1 > |1 >. Since  
it can be tiresome to write the ket notation for every bit, it is often faster to just write the permutations as: 
|00 >, |01 >, |10 >, |11 >, where it is understood that the previous notation is implied.

• Three classical bits have 8 permutations: |000 >, |001 >, |010 >, |011 >, |100 >, |101 >, |110 >, |111 >.
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Classical Bits
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• An interesting way to look at the classical bit is to think of it as comprised 
of two orthogonal unit vectors  in a 2-dimensional space as illustrated on the 
left.

• In the  two-dimensional representation, one can  think of  the |0 > and  the   
|1 > as the column vectors 

|0 > = 1
0 and |1 > = 0

1 Eqn. (10.1).

• Two classical bits therefore live  in  a 4-dimensional vector space with the 
orthonormal basis of

|00 >, |01 >, |10 >, |11 > Eqn. (10.2).

• If we write the orthonormal  basis of (9.2) as a multiplication (as we did on 
the previous slide), then we can use tensor notation to write 

|00 > = |0 > |0 > = |0 >⊗ |0 > and
|01 > = |0 > |1 > = |0 >⊗ |1 > …Eqn. (10.3) and for the rest of (10.2).

Useful Perspective on the Classical Bit



• If we represent 2 classical bits as tensors as we did in (10.3), then a multi-bit representation becomes 
possible.  This hinges on our conception of the classical bit as a vector in two-dimensional space. 

• One can now generalize the notion to writing a vector that makes up a multi-bit state composed of the 
vectors that represent it.  Imagine three people: Alice, Bob, and Cathy have the following classical bits

|Alice > =
𝑎!
𝑎" , |Bob > = 𝑏!

𝑏"
,  |Cathy > =

𝑐!
𝑐" ;  Eqn. (10.4).

• One can form a multi-bit state of their combined state as

|𝐴𝐵𝐶 > =
𝑎!
𝑎" ⊗ 𝑏!

𝑏"
⊗

𝑐!
𝑐" =

𝑎!𝑏!𝑐!
𝑎!𝑏!𝑐"
𝑎!𝑏"𝑐!
𝑎!𝑏"𝑐"
𝑎"𝑏!𝑐!
𝑎"𝑏!𝑐"
𝑎"𝑏"𝑐!
𝑎"𝑏"𝑐"

Eqn. (10.5)
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Multiple Classical Bits as a Tensor Product



• The concept expressed in (10.5) can be made more explicit by considering the number 6 and its classical 
bit representation, where 3 classical bits are used.  We have 

• |6 >!= |110 > = |1 > |1 > |0 > = 0
1 ⊗ 0

1 ⊗ 1
0 =

0
0
0
0
0
0
1
0

Eqn. (10.6).

• If the 8-component column vector is labeled beginning from  the top with  0,1, … 7, we see that the only 
component  with nonzero value is the 1 in the 7th position, which represents the number  6, which  we set 
out to represent.
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…Multiple Classical Bits as a Tensor Product



• The  tensor product structure of classical multi-bit states can be used in a 2"-dimensional column vector to 
represent a state |𝑛 − 1 > for entries that are zero except for the single 1 in the |𝑛 − 1 > position from the 
top.

• Any integer 𝑚 in the range 0 ≤ 𝑚 < 𝑁 can be written as one of 𝑁 orthonormal vectors in an 
𝑁 −dimensional space.

• If 𝑁 = 2" and 𝑚 has a binary representation 

𝑚 = 3
#$%

"&'

𝑚#2#

• Then the column vector for |𝑚 > is 
|𝑚 > = |𝑚"&' >⊗ |𝑚"&( >⊗⋯⊗ |𝑚' >⊗ |𝑚% >.
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Tensor Product Structure of Multiple Bit States



• Quantum mechanics is a description of the building blocks of nature; 
it is a conceptual framework that best describes atoms, electrons, 
photons, molecules and other really tiny particles.

• There are a few rules, axioms, or postulates that form the bedrock of 
this description.

• The axioms are considered incontrovertible truths because there have 
been ample experiments over the years to verify predictions based on 
them.
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Axioms of Quantum Mechanics 



• The 5 main postulates of quantum mechanics are:

• First: The state of a quantum system is described by unit vectors in a complex vector space called 
Hilbert space. We sometimes also call the state vector a wavefunction, 𝜓.

• Second: The probability, 𝑃, of finding or measuring a system to be in a certain state or with a 
certain wavefunction is the square of the modulus of the inner product of the state we measure it 
to be in and the state that the system originally had before the measurement;  put another way, 
the probability is the square of the modulus of the inner product of the output state, 𝜑, and the 
input state, 𝜓; thus 𝑃 = < 𝜑|𝜓 > (.
a. This axiom expresses Born’s rule, which requires that the state vector amplitude or wavefunction 

amplitude of a quantum system be  interpreted as a probability amplitude;

a. A corollary to this  rule is that after measurement, the wavefunction collapses into the measurement 
basis  and all information about the quantum system before the measurement is destroyed.
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Listing of the Postulates of Quantum Mechanics 



• Third: If we want to transform a quantum system, we manipulate its state vector 
(wavefunction) with operators.  Operators transform the state of a system 
(wavefunction) to other states in Hilbert space. All quantum mechanical 
operators are unitary, which means the transpose of the complex conjugate of an 
operator is equal to its inverse: 𝒪∗ < = 𝒪= = 𝒪>?.  This axiom is a 
consequence of the Schrödinger equation which governs temporal evolution.

• Fourth: If we have a quantum system comprised of other systems (super system, 
so to speak), then the Hilbert space of the composite system is a tensor product 
of the separate Hilbert spaces. This product is  the Kronecker product.
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…Listing of the Postulates of Quantum Mechanics 



• Fifth: A measurable physical quantity in quantum mechanics is called an observable and 
is represented by a Hermitian operator, which (for us) will be a complex square matrix 
that is the same as its complex conjugate transpose. Observables are represented by 
eigenvalues of the Hermitian operator. 

• We will now attempt to show how the postulates  are used in various scenarios.

• Quantum mechanics is a linear theory that follows the rules of linear algebra in the 
complex vector space we called “Hilbert space.”
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…Listing of the Postulates of Quantum Mechanics 



• In  two-dimensional space, we write a typical 2D vector 𝑣 as 

𝑣 =
𝑣@
𝑣A = 𝑣@

1
0 + 𝑣A

0
1 , where 𝑣@ and 𝑣A are the coefficients of the vector in the 𝑥

and 𝑦 directions.

• We have explicitly written the unit direction vectors as )𝑥 = 1
0 and )𝑦 = 0

1 ;

• These vectors are orthogonal, meaning that )𝑥<. )𝑦 = 0, and they are normalized, 
meaning that )𝑥 = 1 = )𝑦 and are orthonormal.

• Orthonormal vectors are  basis vectors that can be used to express any other vector in 
the vector space;  in the 2D space the basis is  1

0 , 01 ; other orthonormal basis 
vectors exist for  2D space; this happens to be the simplest.
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Review of Properties of a Basis Vector 



• It is possible to have 3𝐷, 4𝐷, and 𝑛𝐷 dimensional spaces for vectors and in each of  these 
spaces, one can define or find basis vectors to express any arbitrary vector.

• In addition, vectors and the spaces they are live in can be complex and of arbitrary 
dimension.

• If we have the 𝑛𝐷 basis 𝑣!, 𝑣", … 𝑣# , then any vector 𝑢 in this space can be written as a 
linear combination of the  basis vectors with coefficients 𝑐$ which can be complex, thus 
𝑢 = 𝑐!𝑣! + 𝑐"𝑣" +⋯𝑐#𝑣#.

• In the standard basis a vector 𝑢 with components 𝑢!, 𝑢", … 𝑢# can be written as

𝑢 =

𝑢!
𝑢"
⋮
𝑢#

= 𝑢!

1
0
⋮
0

+ 𝑢"

0
1
⋮
0

+⋯𝑢#

0
0
⋮
1 13

General Basis Vectors



• In conventional linear algebra, vectors are mathematical objects with magnitude and direction 
in 2- or 3-dimensional vector spaces. We extend the notion of a vector space into spaces with 
large finite and sometimes infinite dimensions.  The only requirement is that vectors continue 
to be called vectors but are now abstract and could just be a list of things (numbers - which 
include real and complex numbers).  These vectors obey all the rules of linear algebra and 
add a few that are unique to their abstract nature.

• A vector can therefore be written as: 𝑣 = 𝑣!, 𝑣", 𝑣%…𝑣# , horizontally or vertically.

• We already defined the classical states |0 > = 1
0 and |1 > = 0

1 as orthogonal unit vectors 
in  2-dimensional space. They  are the unit vector 3𝑥 in the 𝑥 −direction and t 3𝑦 in the 
y−direction. 
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First Postulate: State vectors 



Unit State Vectors
• In terms of the unit vectors defined in the last slide, consider the state vectors 

| +> = !
"
1
1 = !

"
1
0 + !

"
0
1 Eqn. (10.7) and 

| −> = !
"

1
−1 = !

"
1
0 − !

"
0
1 Eqn. (10.8);

• What we have done above is to write the given state vector | +> and |− > as linear 
combination (superposition) of the unit state vectors, following a rule from linear 
algebra; this means we can write 

| +> = !
"
|0 > +|1 > and |− > = !

"
|0 > −|1 > Eqn. (10.9);

• In general, in 2D space a vector 𝜓 > = 𝑎 0 > +𝑏|1 > = 𝑎
𝑏 .
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• A system in the state |𝜓 > = |− > = ?
B |0 > − |1 > can be measured in the 

orthonormal basis |𝑢? >= |0 > and |𝑢B >= |1 > to get the probability of finding it in 
the state |𝑢? > or |𝑢B > ; this is an application of the second postulate; thus, the 
probability of finding the system in state |0 > is

P |0 > = < 0| −> ( = < 0| '
(
|0 > − |1 >

(
= '

(
< 0 0 > − < 0 1 > ( = '

(
Eqn. (10.10).

• In (10.10), we have used the distributive property, and the orthogonality of unit vectors 
such that the inner products  < 0|0 > = 1 and < 0|1 > = 0;

• In a similar manner, we calculate that P(|1 >) = < 1| −> B = ⁄1 2.
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Second  Postulate: Quantum Measurement 



• Given an orthonormal basis |𝑢! >, |𝑢" >, |𝑢% >,… |𝑢# > and the quantum system |𝜓 >, 
we can measure how much of the system state vector is in each of the unit vectors by 
performing the inner product of each unit vector with the state vector |𝜓 >;

• The probability of measuring how much of the quantum system is in each of the unit vectors 
can be written as  𝑃 𝑢$ = < 𝑢$|𝜓 > " Eqn. (10.11);

• Eqn. (10.11) expresses the collapse of the state vector onto the unit vector state |𝑢$ >;

• We sometimes speak of the projection of the system state vector onto the unit state vector 
|𝑢$ >; the projection operator is 𝑃 = 𝑢$ >< 𝑢$ this is what measurement means.

• A quantum measurement is an application of the Born rule.
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Meaning of Measurement 



• Given a system in the quantum state 

|𝜓 > = !
"
1
𝑗 , what is the probability of measuring it in the state | +> ?

• According to our previous examples, the probability  of the measurement is given by 
performing the following calculation 

𝑃 + = < +|𝜓 > " = !
"
1 1 1

𝑗

"

= !
&
1 + 𝑗 " = !

&
1 + 𝑗 1 − 𝑗 = !

"
;

• Note that in the calculation above  we used  | +> = !
"
1
1 ⟹ < +| = !

"
1 1 ;

• This example obviates  the need for quantum state normalization because for a general 
state  𝜑 > = 𝛼! 𝑢! > +𝛼" 𝑢" > +⋯𝛼# 𝑢# >,  we want

|𝜑 > = 𝛼! " + 𝛼" "… 𝛼# " ;  the 𝛼$ " are the probabilities of measuring |𝜑 > in 
|𝑢$ >; the sum of the probabilities must add to 1.
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Calculation of Measurement Probability 



• Quantum operations transform one state vector to another and as a result, we must 
insist that the operation not change the length of the vector;  in other words,  the 
operators must be unitary;

• In conventional linear algebra, transformations are essentially rotations and rescaling 
of vectors; the mathematical objects capable of performing rotations and re-scaling 
of vectors are matrices;

• Common quantum operators (matrices) are: 

• 𝕝 = 𝐼 = 1 0
0 1 , which is the identity matrix (when multiplied by a scalar 𝜆 will 

perform rescaling);  others are 𝑋 = 0 1
1 0 , 𝑌 = 0 −𝑗

𝑗 0 , and  𝑍 = 1 0
0 −1 ;

• We will next find out what these operators do to a state vector; incidentally, these 
operators  are the Pauli matrices (yes, that Pauli of the exclusion principle). 
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Third Postulate: Quantum Operations



Operations with Pauli Matrices
• We will operate on the state |0 > = 1

0 , which we encountered earlier, with the 
identity matrix, thus

𝐼|0 > = 1 0
0 1

1
0 = 1

0 = |0 >, leaving |0 > unchanged as expected;

• Now operate on |1 > with the 𝑋 operator, thus  0 1
1 0

0
1 = 1

0 = |0 >, which 
made the 0 into a 1 and the 1 into a 0; this is looks like negation;

• Operate on the | +> with the 𝑍 = 1 0
0 −1 operator, thus

1 0
0 −1

⁄1 2
⁄1 2

= !
"

1
−1 = |− >, which transformed | +> to  | − >;
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Hadamard Operator 
• The Hadamard operator is an important matrix in quantum transformations and is 

given as   

𝐻 = ?
B
1 1
1 −1 Eqn. (10.12)

• Action of the Hadamard on the states |1 > , |0>, | +>, |− > is

𝐻|1 > = !
"
1 1
1 −1

0
1 = !

"
1
−1 = !

"
1
0 − 0

1 = !
"
|0 > −|1 > = |− > (10.13);

𝐻|0 > = !
"
1 1
1 −1

1
0 = !

"
1
1 = !

"
1
0 + 0

1 = !
"
|0 > +|1 > = | +> (10.14);

𝐻| +> = !
"
1 1
1 −1

!
"
1
1 = !

"
2
0 = 1

0 = |0 > (10.15);

𝐻|− > =
1
2
1 1
1 −1

1
2

1
−1 =

1
2
0
2 = 0

1 = |1 > 10.16 .
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Constructive and Destructive Interference Operations 

• An alternative and revealing way to write the calculation in (10.15) is as follows:

𝐻| +> = ?
B𝐻 |0 > +|1 > = ?

B 𝐻 0 > +𝐻 1 > = ?
B | +> + |− > (10.16);

• The last expression in (10.16) can be rewritten as 
?
B
| +> + |− > = ?

B
?
B
|0 > +|1 > +|0 > −|1 > = |0 > Eqn. (10.17);

• Observe that the terms in red cancel (or destruct) each other, which is an example 
of destructive interference;  the terms in blue reinforce (or add to) each other, 
which is an example of constructive interference. Since interference is a wave 
phenomenon, and the calculations we have just done are particle-like, we must 
have run into the wave-particle duality phenomenon of quantum mechanics.
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• A quantum bit (qubit) is any unit vector in a two-
dimensional complex vector space spanned by 
|0 > and |1 >.  The general state of a qubit 
|𝜑 > is 

𝜑 > = 𝑐% 0 > +𝑐'|1 > =
𝑐%
𝑐' Eqn. (10.18).

• The parameters 𝑐% and 𝑐' are complex 
probability amplitudes that satisfy the condition 
𝑐% ( + 𝑐' ( = 1 as they represent the 

probability of finding the system in state  |0 >
or |1 >, respectively. 

• A single quantum  bit is a superposition of two  
classical bits. But since 𝑐% (and 𝑐' ( can  be of 
any value, the qubit is represented by a sphere 
known as the Bloch sphere.

The Quantum Bit (Qubit)



Multiple Quantum States
• We introduced the state vectors |0 > = 1

0 and |1 > = 0
1 ; these classical bits are 

components of the quantum bit (qubit) we just defined on the previous slide.

• Just like  in the classical case,  the dimension of a joint 2-qubit state is the dimension of the 
composite  space.

• The Hilbert space of a composite state is the  tensor product of the separate states.

• As in the classical case, two qubits can  be written as
|00 > = |0 > ⨂|0 >
|01 > = |0 > ⨂|1 >
|10 > = |1 > ⨂|0 >
|11 > = |1 > ⨂|1 >

• The 2-qubit system lives in a 4-dimensional space.
24



• As we found out,  a single qubit is a superposition of 2 classical states; we can generalize this to the case 
of the two qubits we discussed in the previous slide.

• If the 4 orthogonal classical states we discussed in the previous slide are normalized, then one can write a 
general state as a superposition of these  classical states, thus

𝜓 >= 𝑐%% 00 > +𝑐%' 01 > +𝑐'% 10 > +𝑐'%|11 > where as  before,
1 = 𝑐%% ( + 𝑐%' ( + 𝑐'% ( + 𝑐'' (.

• Following the logic from above, if  we have 𝑛 classical bits, then the  generalization to  a qubit state is

|𝜓 > = 3
%)*+ (!

𝛽*|𝛼 >"
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Superposition of multiple qubits



Tensors
• For the state vectors 𝑣 =

𝑣!
𝑣" and 𝑢 =

𝑢!
𝑢" , we can find, as before, the tensor 

product 

𝑣⨂𝑢 =
𝑣!
𝑣" ⊗

𝑢!
𝑢" =

𝑣!
𝑢!
𝑢"

𝑣"
𝑢!
𝑢"

=

𝑣!𝑢!
𝑣!𝑢"
𝑣"𝑢!
𝑣"𝑢"

.

• If  the vectors have numerical values  𝑣 =
1
−1
1

and 𝑢 = 2
3 , then their tensor 

product is 𝑣 ⊗ 𝑢 =
1
−2
1

⊗ 2
3 =

2
3
−4
−6
2
3
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• As in the classical case, for two qubits with state vectors  |𝜓 > and |𝜑 > the 
composite state of the two vectors, each in a 2-dimensional space, is the tensor 

|Υ > = |𝜓 > ⨂|𝜑 >.

• And as before, the composite state vector for the 2 qubits  has 4 dimensions;

• If we consider 𝑛 qubits with state vectors |𝜑? >, |𝜑B >,… |𝜑C > each of 
dimension 2, the composite state will be the  tensor   

|Φ > = |𝜑? >⊗ |𝜑B >⊗⋯⊗ |𝜑C >;

• The composite state vector  will be of  2Cdimensions.
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Multiple Qubits



Playing with Qubits
• Suppose Alice has the quantum state |ψ > = | +> = "

#
1
1 and Bob has the quantum state 

|φ > = |0 > = 1
0 ; their combined quantum state is given by the tensor product

|𝜓 > ⨂|𝜑 > = | +> ⨂|0 > = "
#
1
1 ⨂ 1

0 = "
#

1
0
1
0

;

• Alice and Bob have a mutual friend, Charlie, who has the quantum state 

|χ > = |− > = "
#

1
−1 ; their single combined group quantum state will then be given by

|𝜓 > ⨂|𝜑 > ⨂|𝜒 > = "
#
1
1 ⨂ 1

0 ⨂ "
#

1
−1 = "

#

1
−1
0
0
1
−1
0
0

.
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• Suppose we have the states |𝜓 > = | + 1 > and |𝜒 > = |1− >; calculate the 
probability of measuring the state |𝜓 > in the state |𝜒 >;

• First, we write the states explicitly as vectors 

|𝜓 > = '
(
1
1 ⨂ 0

1 = '
(

0
1
0
1

and |𝜒 > = 0
1 ⊗ '

(
1
−1 = '

(

0
0
1
−1

;

• By Born’s rule, the probability can then be written as 

𝑃 𝜒 = < 𝜒|𝜓 > ( = '
(
0 0 1 − 1

0
1
0
1

(

= − '
(

(
= '

,
;

• Same result can be obtained by writing  𝑃 𝜒 = < +1|1− > ( = < +|1 > (. < 1|− > ( = '
,
.
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Measuring Probabilities of Composite States 



States that Cannot be Written as Tensor  Products 

• We will stick with 4-dimensional vectors: if we cannot write a 4-dimensional 
vector as two 2-dimensional vectors, then it means we can’t separate the              
4-dimensional vector;

• Mathematically, for any 2-dimensional qubits |𝜓 > and  |𝜑 >, if we have        
|𝜒 >≠ |𝜓 > |𝜑 >, then we say the state in inseparable.

• On  the other hand, if  |𝜒 > = |𝜓 > |𝜑 >, then  |𝜒 > is a  separable state.

• If a 2-qubit state |Ψ > is written as  |Ψ > = |𝜑 > ⨂|𝜒 > for any  possible  
states |𝜑 > and |𝜒 >,  then  the state |Ψ > is entangled.
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• Suppose Alice has the qubit 𝐴 > = 𝑐% 𝑎% > +𝑐'|𝑎' > and Bob has the qubit 𝐵 > = 𝑑% 𝑏% > +𝑑'|𝑏' >,
where 𝑐# and 𝑑#are the probability amplitude coefficients.

• These states are defined so that if Alice does a measurement and her state jumps to |𝑎% >, she has a 
classical 0.  Similarly, if Bob performs a measurement  and his state  jumps to  |𝑏' > he has a classical 1.

• Alice and Bob’s joint state is
|𝐴𝐵 > = |𝐴 >⊗ |𝐵 > = 𝑐%|𝑎% > +𝑐'|𝑎' > ⊗ 𝑑%|𝑏% > +𝑑'|𝑏' .

• Carrying put the tensor product we get 
𝐴𝐵 > = 𝑐%𝑑% 𝑎%𝑏% > +𝑐%𝑑' 𝑎%𝑏' > +𝑐'𝑑% 𝑎'𝑏% > +𝑐'𝑑'|𝑎'𝑏' >.

• If we define  𝜚 = 𝑐%𝑑%, 𝜍 = 𝑐%𝑑', 𝜏 = 𝑐'𝑑%, 𝜐 = 𝑐'𝑑', we can write 
|𝐴𝐵 > = 𝜚|𝑎%𝑏% > +𝜍 𝑎%𝑏' > +𝜏 𝑎'𝑏% > +𝜐|𝑎'𝑏' > , where 𝜚 ( + 𝜍 ( + 𝜏 ( + 𝜐 ( = 1.

• In general, when 𝜚𝜐 ≠ 𝜍𝜏, Alice and Bob’s states are entangled otherwise they are not when 𝜚𝜐 = 𝜍𝜏.
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Quantum Entanglement



• Suppose a joint state for Alice and Bob is written as 

𝐴𝐵 > = $
%
𝑎!𝑏! > + &

%
𝑎!𝑏" > + $

%
𝑎"𝑏! > + &

%
|𝑎"𝑏" >.

• To see if the state is entangled or separable, we will factorize it from Alice’s perspective, thus

|𝐴𝐵 > = |𝑎! >
3
4 𝑏! > +

5
4 𝑏" > + |𝑎" >

3
4 𝑏! > +

5
4 𝑏" >

• Dividing  the  expressions in parenthesis by their unit lengths  and multiplying outside the parenthesis by 
their  lengths gives  us

𝐴𝐵 > =
1
2
𝑎! >

6
4 𝑏! > +

10
4 𝑏" > +

1
2
|𝑎" >

6
4 𝑏! > +

10
4 𝑏" >

• The state factorizes to |𝐴𝐵 > = '
(
𝑎% > + '

(
𝑎' >

-
,
𝑏% > + '%

,
𝑏' > , therefore it is separable.

• We  could also have determined the separability by inspecting the product of coefficients of the original 
state; thus,       𝜚𝜐 = !

,
.
,

= 𝜍𝜏 = .
,

!
,

;  since they are equal, the  state is  separable.
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Joint State Calculations



• Suppose the Alice-Bob composite state is now

• 𝐴𝐵 > = '
,
𝑎%𝑏% > + '

,
𝑎%𝑏' > + /

( (
𝑎'𝑏% > +0|𝑎'𝑏' >

• From Alice’s perspective we can write the state as

|𝐴𝐵 > = |𝑎% >
1
4
𝑏% > +

1
4
𝑏' > + |𝑎' >

7
2 2

𝑏% > +0 𝑏' >

• Normalizing the terms in the parenthesis and diving by the lengths outside the parenthesis, gives

𝐴𝐵 > =
1
2 2

𝑎% >
1
2
𝑏% > +

1
2
𝑏' > +

7
2 2

|𝑎' > 1 𝑏' > +0 𝑏' >

• The terms in parenthesis are not the same, which means we cannot factorize  the state and it is therefore 
entangled.  

• We could also have determined this by examining the products of the amplitude coefficients of the 
original state, which are 𝜚𝜐 = 0 ≠ 𝜍𝜏 = '

,
/

( (
; the state is therefore entangled.
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Joint State Calculation to Determine Separability 



• Quantum computers perform reversible operations on qubits; this means the operations are linear, taking 
unit vectors to other unit vectors.  These operations are called unitary, and the operators are unitary 
operators defined by

𝑢𝑢0 = 𝑢0𝑢 = 1.

• For a general 𝑛 − qubit operation, one is performing 2" −dimensional unitary transformation 𝑈 and like 
above, we must have 

𝑈𝑈0 = 𝑈0𝑈 = 1.
• We have already encountered the most common unitary quantum operators: they are 

𝑋 = 0 1
1 0 𝑌 =

0 −𝑗
𝑗 0 ,  𝑍 = 1 0

0 −1 , 𝐻 = '
(
1 1
1 −1 , and 𝐼 = 1 0

0 1 .

• The 𝑋 is also called the CNOT operator as it negates what it operates on; it is equivalent to the classical 
NOT gate.  The 𝑍 operator swaps components of a single qubit, I is the identity operator, and H is  the 
Hadamard, which  takes a qubit from one basis to another  orthonormal basis.
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Operations on Qubits
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• Some quantum algorithms are based on unitary 
operations that act on only one  qubit  at a time 
and are  built from 1-qubit gates; they can also 
act on a pair of qubits (2-qubit gates).

• Gate-based quantum computers are constructed 
from 1- and 2-qubit gates.  As in classical 
computing, any arbitrary transformation can be 
built up from elementary 1- and 2-qubit gates.

• Illustration of  some circuit components of 
generic quantum gates are shown on the graphic 
to  the left. Thick lines represent many  qubits, 
and a thin line represents a single qubit. 
Measurement is represented  by M.

Reversible Operations on Qubits



• Introduced the postulates of quantum mechanics relevant for quantum computing
– Discussed quantum bit as a superposition of two classical bit
– Classification

• Quantum operations 
– Entanglement 
– Reversible unitary operations on qubits
– Unitary operators as gates for quantum circuits 
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Summary


